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Abstract

In this paper, two existing one-dimensional mathematical models, one for continuous sedimentation of
monodisperse suspensions and one for settling of polydisperse suspensions, are combined into a model of
continuous separation of polydisperse mixtures. This model can be written as a 5rst-order system of conserva-
tion laws for the local concentrations of each particle species with a 6ux vector that depends discontinuously on
the space variable. This application motivates the extension of the Kurganov–Tadmor central di7erence scheme
to systems with discontinuous 6ux. The new central schemes are based on discretizing an enlarged system in
which the discontinuous coe%cients are viewed as additional conservation laws. These additional conservation
laws can either be discretized and the evolution of the discontinuity parameters is calculated in each time step,
or solved exactly, that is, the discontinuity parameters are kept constant (with respect to time). Numerical
examples and an L1 error study show that the Kurganov–Tadmor scheme with 5rst-order in time discretization
produces spurious oscillations, whereas its semi-discrete version, discretized by a second-order Runge–Kutta
scheme, produces good results. The scheme with discontinuity parameters kept constant is slightly more accu-
rate than when these are evolved. Numerical examples illustrate the application to separation of polydisperse
suspensions.
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1. Introduction

In this paper we seek “easy to implement” numerical schemes for N ×N systems of conservation
laws with a 6ux vector containing discontinuous coe%cients:

9t�+ 9xf(�(x); �) = 0; (1.1)

where � := (�1; : : : ; �N )T is the unknown state vector and f := (f1; : : : ; fN )T is a given 6ux vector,
which depends on the space variable x through the vector-valued parameter

�(x) = (
1(x); : : : ; 
p(x)):
The basic assumption is that the spatially varying coe%cient � is of bounded total variation. In
applications, � is typically piecewise smooth with 5nitely many jump discontinuities, or even piece-
wise constant with 5nitely many jumps. Our interest in such problems is motivated from models
of continuous sedimentation of polydisperse suspensions of small spheres of N classes which di7er
in size or density. Such models are of widespread use in mineral processing, chemical engineering,
volcanology and medicine.
In recent years there has been a lot of interest in conservation laws (and related equations) with

discontinuous coe%cients in many applications including 6ow in porous media [28,43,70], sedimenta-
tion processes (relevant references are provided below), and tra%c 6ow on a highway [31,55]. They
also arise in radar shape-from-shading problems [61,62] as well as other related Hamilton-Jacobi
equations [63], see also [36]. Other applications are blood 6ow after endovascular repair [18], gas
6ow in variable duct [50], and conservation laws with source term [30,34].
The usual way to cope with the discontinuous parameter �(x) is to express it as an additional

conservation law (see, e.g., [27,33])

9t�(x) = 0; (1.2)

so that we arrive at the following enlarged (N + p)× (N + p) system of conservation laws

9tu + 9xF(u) = 0; (1.3)

where u= (�1; : : : ; �N ; 
1; : : : ; 
p)T and F= (f1; : : : ; fN ; 0; : : : ; 0)T. Note that (1.2) introduces linearly
degenerate 5elds in the system (1.2) with eigenvalues that are zero. Consequently, if the eigenvalues
of the Jacobian of the system (1.1) (for 5xed �) include eigenvalues that are zero (this is case with
the systems that are considered in this paper), then the system (1.3) is nonstrictly hyperbolic and
experiences so-called nonlinear resonant behavior, which implies that wave interactions are much
more complicated than in strictly hyperbolic systems. In fact, one cannot expect to bound the total
variation of the conserved quantities directly, but only when measured under a certain singular
mapping, as was done 5rst in [70] for approximate solutions generated by the Glimm scheme. This
of course causes both mathematical and numerical di%culties as standard ideas and theory cannot
be applied. Although some results of mathematical and numerical analysis exist for general systems
like (1.3), see [32,33], it is the “scalar case”, i.e., p = 1 and N = 1 (i.e., (1.3) becomes a 2 × 2
system) that has been most investigated in the literature. It is outside the scope of this paper to
give a detailed overview of the existing literature, but let us mention that convergence with the
singular mapping approach has been established for the 2×2 Godunov method in [33,48,49] and for
2 × 2 front tracking methods [28,41–43]. Convergence for the scalar Engquist-Osher and Godunov
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schemes has been proved in [71,72], again using the singular mapping approach. Extensions of this
scalar convergence analysis to degenerate parabolic equations with discontinuous coe%cients can be
found in [39]. Scalar relaxation schemes are analyzed in [35], while convergence of the vanishing
viscosity/smoothing method is proved in [38]. The papers [35,38] use the compensated compactness
method for the convergence analysis, while all the other papers cited use the singular mapping
approach. Regarding uniqueness in the scalar case, see [37,41–43,67,71]. Some other numerical
schemes without a theoretical foundation can be found in [2,67].
For the particular model that is studied in this paper when N = 1 (and p = 2), a 2 × 2 front

tracking scheme is analyzed in [10], a scalar 5nite di7erence scheme is analyzed in [15] (see also
[12]), while a relaxation scheme is analyzed in [11]. Moreover, a complete well-posedness (existence
and uniqueness) theory in a certain functional class is given in [15]. We mention that for N ¿ 1,
there exist no results of mathematical and numerical analysis.
Although we are here interested in nonlinear equations with discontinuous coe%cients, we still

refer to [7,29,65] for an analysis of linear transport equations with discontinuous coe%cients.
The present paper has two goals. Firstly, we formulate a model of continuous separation of

polydisperse suspensions of rigid spheres as a straightforward combination of existing models on the
one hand, of continuous sedimentation of monodisperse suspensions and on the other hand, of batch
settling of polydisperse suspensions. The resulting model is expressed as a system of conservation
laws with discontinuous 6ux (1.1). If particles with di7erent densities are involved, then complex
eigenvalues of the Jacobian of the 6ux-density vector may occur. In this case, the system is of mixed
hyperbolic-elliptic (N = 2) or nonhyperbolic (N¿ 3) type.
Secondly, we use this model as an example to demonstrate that the second-order central scheme

in [44] (brie6y, the KT scheme) can be applied to solve numerically systems like (1.1). In fact,
we demonstrate that it is possible to extend the KT scheme to systems of conservation laws with
a discontinuous 6ux in several straightforward ways, based on the enlarged system (1.3). Several
variants are compared by an application to a scalar sample problem, including an L1 error study.
The best performing scheme is applied to simulate continuous separation of bidisperse suspensions
utilizing published experimental data.
The remaining part of this paper is organized as follows: In Section 2 the mathematical model is

derived in detail. Section 3 is devoted to deriving the numerical schemes, while numerical experi-
ments are presented and discussed in Section 4. Concluding remarks are given in Section 5.

2. Mathematical model of polydisperse gravity separation

2.1. Multidimensional model equations

We consider a polydisperse suspension of rigid particles, for simplicity assumed to be of spherical
shape, which are dispersed in a viscous 6uid of density %f and of dynamic viscosity �f . The solid
particles belong to N di7erent species having size (diameter) di and density %i; i= 1; : : : ; N , where
we assume that the species are distinguishable, i.e. di �= dj or %i �= %j for i �= j. To be consistent
with previous treatments we assume here d1¿d2¿ · · ·¿dN . A set of generic model equations for
the three-dimensional motion of the mixture was derived in [16] by starting from the mass and linear
momentum balances for the 6uid and each solid species considered as a separate phase, introducing
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constitutive assumptions and simplifying the model equations as a consequence of a dimensional
analysis. Details of the derivation have been included into a series of papers [5,6,9,16,17] and are
therefore omitted here.
The resulting model equations can be written as

9t�i +∇ · (�iq + fi(�)k) = 0; i = 1; : : : ; N; (2.1)

∇ · q = 0; (2.2)

∇p=−%(�)gk +
1

1− �
∇ · TEf : (2.3)

Here �i is the local solids concentration of Species i (having diameter di and density %i), t is
time, q is the volume average 6ow velocity of the mixture, � := (�1; : : : ; �N )T is the vector of the
solids concentrations, f(�) := (f1(�); : : : ; fN (�))T is the 6ux density vector (with given functions
fi to be discussed below), and k is the upwards pointing unit vector. In Eq. (2.3) p denotes the
pore pressure, %(�) := %1�1 + · · ·+ %N�N + (1− �)%f is the local density of the mixture, g is the
acceleration of gravity, � := �1 + · · · + �N is the cumulative solids concentration, and TEf is the
viscous (or extra) stress tensor of the mixture, which all viscous e7ects have been “swept” into.
Since we pass to one space dimension in a moment, the detailed form of TEf is unimportant here.

2.2. The :ux density vector

The choice of the 6ux density functions fi(�), i = 1; : : : ; N , re6ects the material behavior of the
N -disperse suspension under study. In this paper we consider the Masliyah–Lockett–Bassoon (MLB)
model [16,53,54], which amounts to utilizing

fi(�) = fMi (�) := �V (�)�i

[
�i( P%i − P�T�)−

N∑
k=1

�k�k( P%k − P�T�)
]
; i = 1; : : : ; N: (2.4)

Here, the parameters �; �i; P%i and P� are de5ned by � := −gd21=(18�f ), �i := d2i =d
2
1 and P%i := %i − %f

for i = 1; : : : ; N , and P� := ( P%1; : : : ; P%N )T. The function V (�) is a hindered settling function that can,
for example, be chosen as the Richardson–Zaki [66] function

V (�) =

{
(1− �)n−2; n¿ 2 for 06�6�max;

0 otherwise;
(2.5)

where 0¡�max6 1 is a maximum solids concentration.

2.3. Stability of the MLB model

Alternative choices of the 6ux vector f(�) are discussed in [8,9]. The study in [46] provides an
experimental comparison of 5ve of these models (each one de5ned by its 6ux density vector f(�)),
including the MLB model, which turned out to predict the separation of a bidisperse suspension
with good accuracy but is even outperformed by the algebraically more complicated Patwardhan and
Tien model [64].
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Our preference of the MLB model is based on recent analyses [6,16], in which we show that
the model has desirable stability properties. We brie6y discuss this issue. In one space dimension,
only Eq. (2.1) need to be solved, with q ≡ 0 in a closed column of height L. This leads to the
initial-boundary value problem of a system of conservation laws

9t�i + 9xfi(�) = 0; i = 1; : : : ; N; (2.6)

�(x; 0) = �0(x); 06 x6L; f |x=0 = f |x=L = 0; t ¿ 0: (2.7)

It is well known that solutions of (2.6) are discontinuous in general, and that the propagation speed
�(�+; �−) of a discontinuity in the concentration 5eld �i separating the states �+ and �− is given
by the Rankine–Hugoniot condition � = (fi(�+)− fi(�−))=(�+i − �−

i ); i = 1; : : : ; N .
We recall that the system (2.6) is called hyperbolic if the eigenvalues of the Jacobian Jf(�) :=

(9fi=9�k)16i; k6N are real, and strictly hyperbolic if these are moreover pairwise distinct. For N =2,
a system with a pair of complex conjugate eigenvalues is elliptic. Some of the 6ux-density vectors
f(�) proposed in the literature cause the system (2.6) to be nonhyperbolic, or to be of mixed
hyperbolic-elliptic type in the case N = 2, depending on the size and density parameters, where the
type is mixed if for given sizes and densities, the system is nonhyperbolic (or elliptic) for �∈E,
E ⊂ D := {�∈RN : �¿ 0; �6 1}, and D\E is nonempty.
The ellipticity criterion is equivalent to Batchelor and Janse van Rensburg’s [4] criterion for

the occurrence of instabilities like blobs and viscous 5ngering in bidisperse sedimentation. By a
perturbation analysis, we showed [16] that loss of hyperbolicity, that is the occurrence of complex
eigenvalues of Jf(�), provides an instability criterion for polydisperse suspensions of arbitrary
numbers of species N .
More recently [6], we proved that for equal-density particles ( P%1 = · · · = P%N = %s − %f ), arbi-

trary N and particle size distributions, the system (2.6) is strictly hyperbolic for all �∈D with
�1¿ 0; : : : ; �N ¿ 0 and �¡ 1 if the 6ux vector (2.4) is chosen. The proof involves evaluating the
characteristic polynomial of the Jacobian Jf(�). This can be done by means of an explicit formula,
which in turn is derived by exploiting elimination possibilities in the corresponding determinants.
The hyperbolicity, and thus stability result for equal-density spheres is in agreement with experi-
mental evidence since instability phenomena never have been observed with this type of mixtures,
but always involve particles of di7erent speci5c densities.

2.4. The continuous clari=er-thickener

Consider the clari5er-thickener drawn in Fig. 1, which is supposed to have a constant cross-
sectional area S. This unit is analogous to that in [10,12,15], but is now supposed to treat a poly-
disperse suspension. This (of course, highly idealized) vessel is operated in the following way.
At depth x = 0, feed suspension is fed into the equipment at a volume rate QF(t)¿ 0. The feed

suspension contains solids of Species 1 to N at the corresponding volume fractions �F1(t) to �FN (t)
satisfying �Fi (t)¿ 0, i= 1; : : : ; N , and �F(t) := �F1(t) + · · ·+ �FN (t)6�max. At x= 0, the feed 6ow
divides into an upwards-directed and a downwards-directed bulk 6ow. We assume that the under6ow
volume rate QR(t)¿ 0 is also prescribed, and that QR(t)6QF(t). Consequently, the signed volume
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Fig. 1. The clari5er-thickener model showing the known bulk 6ows and control variables. The upper half (x∈ [− 1; 0))
is the clari5cation zone and the lower half (x∈ (0; 1]) is the thickening zone.

rate of the upwards-directed bulk 6ow is

QL(t) = QR(t)− QF(t)6 0: (2.8)

At depth x=−1, an over6ow opening is located. Summarizing, we prescribe the volume rates QF(t)
and QR(t) and the feed concentrations �F1(t) to �FN (t) as independent control variables. From these
we calculate the dependent control variable QL(t) by (2.8).
For the remainder of the paper, we simply assume that all control variables are constant with

respect to t, and we introduce qc := Qc=S, c∈{F;L;R}. Moreover, to avoid tedious repetitions, we
assume that in all equations the index i assumes the values i = 1; : : : ; N , and that j∈Z.
Disregarding for a moment the presence of a solids source but appropriately taking into account

these bulk 6ow velocities, we can write the 6ux function for Species i as

g̃i(�; x) =

{
(qR − qF)�i for x6− 1;
(qR − qF)�i + fMi (�) for − 1¡x6 0;

qR�i + fMi (�) for 0¡x6 1;

qR�i for x¿ 1:
(2.9)

Including now the feed mechanism leads to the system of conservation laws with source term
9t�i + 9x(g̃i(�; x)) = qF�Fi �(x), where �(·) denotes the Dirac direct mass. Including the singular
source term into the 6ux function and using the Heaviside function H (·) leads to the equation

9t�i + 9x(g̃i(�; x)− qF�Fi H (x)) = 0: (2.10)

We can write (2.10) as 9t�i + 9x(ĝi(�; x)) = 0 with

ĝi(�; x)

:=

{
(qR − qF)�i for x6− 1;
(qR − qF)�i + fMi (�) for − 1¡x6 0;

qR�i−qF�Fi + fMi (�) for 0¡x61;

qR�i−qF�Fi for x¿1:

Adding the constant −(qR − qF)�Fi , we can 5nally state the initial-value problem of interest as

9t�i + 9xgi(�; x) = 0; t ¿ 0; x∈R; (2.11)
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�i(x; 0) = �0i (x); x∈R; �0 ∈D�max ; (2.12)

g(�; x) =




(qR − qF)(�i − �Fi ) for x6− 1;
(qR − qF)(�i − �Fi ) + fMi (�) for − 1¡x6 0;

qR(�i − �Fi ) + fMi (�) for 0¡x6 1;

qR(�i − �Fi ) for x¿ 1:

(2.13)

As in [12,15], the 6ux discontinuities can be described by two discontinuous parameters


1(x) :=

{
0 for x �∈ [− 1; 1];
1 for x∈ [− 1; 1]; 
2(x) :=

{
qR − qF for x¡ 0;

qR for x¿ 0:

Collecting the parameters 
1 and 
2 in the vector �(x) := (
1(x); 
2(x)), we can write the 6ux as

fi(�(x); �) := 
1(x)fMi (�) + 
2(x)(�i − �Fi ); (2.14)

such that the governing equation (2.11) takes the form

9t�i + 9xfi(�(x); �) = 0 (i = 1; : : : ; N ): (2.15)

2.5. The scalar case

For N = 1 we identify �= �1 = �, P%1 = P%s and fM(�) = fM1 (�) and obtain from (2.4)

fM(�) = �V (�)�( P%s(1− �)− �( P%s − P%s�)) = u∞�(1− �)2V (�); u∞ =
d2g(%s − %f )

18�f
;

where u∞ is (according to Stokes’ law) the 5nal settling velocity of a sphere of diameter d and
density %s in an unbounded 6uid of density %f and viscosity �f . For the function (2.5) we obtain
the widely used function fM(�) = f(�) given by

f(�) =

{
u∞�(1− �)n for 0¡�¡�max;

0 otherwise:
(2.16)

The scalar case represents the appropriate extension of Kynch’s well-known kinematic theory
[45] of one-dimensional batch sedimentation of small rigid spheres to continuous sedimentation.
Studies of such models from an applicative point of view and ad-hoc numerical treatments include
[3,19,20,47,68], see also [14] for an overview and a brief history of mathematical models of contin-
uous sedimentation. The decisive problem is, of course, the appropriate description and discretization
of the singular feed source term and the discontinuous transition between upward and downward
directed 6ows. This problem was circumvented in [19] by smoothing out the source term. On the
other hand, Nasr-El-Din et al. [56–58] assume that a feed point source is associated with a “source
zone” of 5nite height within the clari5er-thickener. The obvious purpose of this zone is to act as
a “bu7er” between the upward and downward directed bulk 6ows, so that these 6ows occur in
regions which are spatially separated. In fact, it is assumed in [57] (similar statements also appear
in [56,58]) that “the solids and the carrier 6uid are allowed to exit through the over6ow or the
under6ow boundaries, but they are not allowed to enter the source zone except through the feed
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stream”. These assumptions are however not put in mathematical terms in [56–58]. Moreover, a
model in which the clari5cation and thickening zones are not connected is clearly unable to explain
the really interesting cases, which occur for example if solids accumulate in the thickening zone,
form a rising sediment layer, and eventually break through the feed level (x = 0). (The mentioned
papers [56–58] are concerned with polydisperse suspensions, but the shortcomings of the “source
zone” concept are independent of the aspect of polydispersivity.)
Thorough analyzes of the clari5er-thickener model with discontinuous 6ux (as presented here)

for the scalar case (N = 1), constructions of solutions, and operating charts predicting the behavior
of the system in response to operating conditions were presented by Diehl in a series of papers
[21–25]. Complementing the insight provided by these analyses by a computational approach, the
authors and co-workers have formulated several alternative numerical methods that can be employed
to solve the clari5er-thickener model in the monodisperse (scalar) case. A front tracking scheme is
analyzed in [10], a scalar 5nite di7erence scheme is analyzed in [12,15], its extension to vessels
with discontinuously varying cross-sectional area is treated in [13,14], while a relaxation scheme
is analyzed in [11]. A complete existence and uniqueness theory in a particular functional class is
given in [15].

3. Central schemes

Roughly speaking, shock-capturing numerical schemes for systems of conservation laws can be
classi5ed as either central schemes or upwind schemes. A disadvantage with upwind schemes is that
one needs to solve the Riemann problem exactly or approximately, which is di%cult for complicated
systems. We point out that the (exact or approximate) solution of the Riemann problem for the
system of conservation laws that we study in this paper is not known at the moment. For this reason,
we turned our attention to central schemes in our previous papers [8,9] on systems of conservation
laws (without discontinuous coe%cients) modeling sedimentation of polydisperse suspensions. In the
1990s, this central class of schemes received considerable interest, following the introduction of
the second-order sequel to the Lax–Friedrichs scheme in [59]. Second-order central schemes can
be viewed as a direct extension of the 5rst-order Lax–Friedrichs central scheme, which is known
to be robust but contains excessive dissipation. Second-order central schemes resolve the problem
of excessive dissipation by reconstructing, in each time step, a (MUSCL type) piecewise-linear
interpolant from the cell averages computed in the previous time step. Unlike upwind schemes,
central schemes avoid approximate Riemann solvers, projections along characteristic directions, and
the splitting of the 6ux vector in upwind and downwind directions. This makes them attractive for
solving involved systems of conservation laws such as the system that we consider in this paper. In
[8], we used the second-order shock-capturing scheme developed in [59], while in [9] we used the
second-order scheme developed in [44], which we refer to as the KT scheme. In this paper, as in
[9], we shall continue to use the KT scheme [44]. The KT scheme has a smaller numerical viscosity
and is better suited for near steady-state calculations that the original central scheme [59], a property
that is relevant for our application. Of course, the new feature here is that we adapt the KT scheme
to systems with discontinuous 6ux. We refer to the lecture notes [69] for a general introduction to
central schemes and relevant references.
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3.1. Derivation of the fully discrete scheme

We introduce a discretization of R × R+ by setting xj := jVx, j∈Z, and tn := nVt, n∈N,
Vx;Vt ¿ 0, ! := Vt=Vx. To derive a numerical scheme for (2.15), we consider the extended
system (see Section 1 for motivation)

9t�(x) = 9t(
1(x); 
2(x))T = 0;

9t�i + 9xfi(�(x); �) = 0 (i = 1; : : : ; N ):

We introduce the vector of unknowns u∈RN+2 by u := (�1; : : : ; �N ; uN+1; uN+2)T and the
corresponding 6ux vector F :RN+2 → RN+2 by

F(u) := (f1(�1; : : : ; �N ; uN+1; uN+2); : : : ; fN (�1; : : : ; �N ; uN+1; uN+2); 0; 0)T; (3.1)

where the functions f1 to fN are de5ned by (2.14), with 
1 and 
2 replaced by uN+1 and uN+2,
respectively. Note that F does not depend on x. We then consider the initial value problem

9tu + 9xF(u) = 0; x∈R; t ¿ 0; (3.2)

u(x; 0) = u0(x); x∈R; u0(x) = (�01(x); : : : ; �
0
N (x); 


1(x); 
2(x))T: (3.3)

We now construct a numerical scheme by applying the KT scheme [44] to the initial-value problem
(3.2), (3.3). To this end, assume that at time level tn we are given the cell averages { Punj} =
{( P�n

1; j ; : : : ; P�
n
N;j; Pu

n
N+1; j ; Pu

n
N+2; j)

T}. We then construct a piecewise linear reconstruction

u(x; tn) =
∑
j∈Z

(
Punj +

1
Vx

u′j(x − xj)
)

"[xj−1=2 ; xj+1=2](x); (3.4)

where the slope vector u′j = (�′
1; j ; : : : ; �

′
N;j; u

′
N+1; j ; u

′
N+2; j)

T is de5ned by

�′
l; j =MM{$( P�n

l; j − P�n
l; j−1); ( P�

n
l; j+1 − P�n

l; j−1)=2; $( P�
n
l; j+1 − P�n

l; j)}; l= 1; : : : ; N; (3.5)

u′l; j =MM{$( Pun
l; j − Pun

l; j−1); ( Pu
n
l; j+1 − Pun

l; j−1)=2; $( Pu
n
l; j+1 − Pun

l; j)}; l= N + 1; N + 2; (3.6)

where $∈ [0; 2] is a parameter and MM(·; ·; ·) denotes the usual minmod function which equals
min{a; b; c} if a; b; c¿ 0, max{a; b; c} if a; b; c¡ 0, and zero otherwise. In particular, this choice of
slope vectors satis5es (see [59]) (1=Vx)u′j=(9u=9x)(x=xj; t=tn)+O(Vx), which ensures second-order
accuracy wherever the components of u are smooth.
The new ingredient of the KT scheme [44] is an estimate of the local propagation speeds an

j+1=2,
j∈Z at the cell boundaries xj+1=2, j∈Z. We de5ne the left and right intermediate values of the
interpolant u(x; tn) at x = xj+1=2 by

Pu−j+1=2 := u(x
−
j+1=2; tn) = Punj +

1
2
u′j; Pu+j+1=2 := u(x

+
j+1=2; tn) = Punj+1 −

1
2
u′j+1:

We denote by '(·) the spectral radius function and by JF(u) the (N + 2) × (N + 2) Jacobian of
F(u). Then according to [44] the local speeds of propagation are de5ned by

an
j+1=2 = max{'(JF(u−j+1=2)); '(JF(u+j+1=2))}: (3.7)
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In practice, the quantities an
j+1=2 are estimated by considering ‘approximate eigenvalues’. However,

in the particular case of the MLB model with equal-density spheres and for arbitrary N , accurate
bounds for these eigenvalues are available, see [6].
Given the piecewise linear interpolant u(·; tn) de5ned in (3.4) and the local speeds aj+1=2, the

construction of the cell averages Pun+1j proceeds in two steps as follows.
Step 1: The original central scheme due to Nessyahu and Tadmor [59] is based on averaging over

the (staggered) control volume [xj; xj+1] of 5xed size Vx. Instead, we here integrate over the narrower
(and nonuniform) control volume [xnj+1=2; l; x

n
j+1=2; r] ⊂ [xj; xj+1], where xnj+1=2; l := xj+1=2−an

j+1=2Vt and
xnj+1=2; r := xj+1=2 + an

j+1=2Vt. We now introduce two families of cell averages at time level tn+1,
namely the averages

P(n+1
j+1=2 :=

1
Vxnj+1=2

∫ xnj+1=2;r

xnj+1=2;l

u(x; tn+1) dx; (3.8)

which contain the information from the Riemann fans emerging from the cell boundaries xj at time
tn, and the averages

P(n+1
j :=

1
Vxnj

∫ xnj+1=2;l

xnj−1=2;r

u(x; tn+1) dx;

Vxnj := xnj+1=2; l − xnj−1=2; r = Vx −Vt(an
j−1=2 + an

j+1=2); (3.9)

that are free of neighboring Riemann fans. Inserting the de5nition (3.4) of the piecewise linear
reconstruction, we obtain for the 5rst family of cell averages the equation

P(n+1
j+1=2 =

1
2
( Punj + Punj+1) +

1
4
(1− an

j+1=2!)(u
′
j − u′j+1)

− 1
2an

j+1=2Vt

[∫ tn+1

tn

F(u(xnj+1=2; r)) dt −
∫ tn+1

tn

F(u(xnj+1=2; l)) dt
]
: (3.10)

Applying the midpoint rule to approximate the time integrals in (3.10), we get

P(n+1
j+1=2 =

1
2
( Punj + Punj+1) +

1− an
j+1=2!

4
(u′j − u′j+1)−

1
2an

j+1=2
(F(un+1=2j+1=2; r)− F(un+1=2j+1=2; l)); (3.11)

where the mid-point values are obtained by Taylor expansions:

un+1=2j+1=2; l := u
n
j+1=2; l −

!
2
F′(unj+1=2; l); un+1=2j+1=2; r := u

n
j+1=2; r −

!
2
F′(unj+1=2; r);

unj+1=2; l := Punj +
(
1
2
− !an

j+1=2

)
u′j; unj+1=2; r := Punj+1 −

(
1
2
− !an

j+1=2

)
u′j+1; (3.12)

and the components of the slope vectors (introduced with a slight abuse of notation)

F′(unj+1=2; c) = (F
′
1(u

n
j+1=2; c); F

′
2(u

n
j+1=2; c); : : : ; F

′
N+2(u

n
j+1=2; c))

T; c∈{l; r}
are calculated by

F ′
l(u

n
j+1=2; c) =MM{$(Fl(unj+1=2; c)− Fl(unj−1=2; c)); (Fl(unj+3=2; c)− Fl(unj−1=2; c))=2;

$(Fl(unj+3=2; c)− Fl(unj+1=2; c))}; c∈{l; r}; l= 1; : : : ; N + 2: (3.13)
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The second family of cell averages de5ned by (3.9) is handled in a similar way. As before, integrating
exactly and then approximating the resulting two time integrals by the midpoint rule, we get the
following equation for the cell averages (3.9):

P(n+1
j = Punj −

!
4
(an

j+1=2 − an
j−1=2)u

′
j −

!
1− !(an

j−1=2 + an
j+1=2)

(F(un+1=2j+1=2; l)− F(un+1=2j−1=2; r)); (3.14)

where the vectors un+1=2j+1=2; l and u
n+1=2
j−1=2; r are de5ned in (3.12).

Step 2: In the second (and 5nal) step, we convert the nonuniform cell averages (3.8) and (3.9)
into cell averages over the nonstaggered grid cells [xj−1=2; xj+1=2], j∈Z. To this end, we consider
a piecewise linear reconstruction over the nonuniform grid cells at time tn+1 and then project its
averages onto the original grid. The required piecewise linear reconstruction takes the form

((x; tn+1) =
∑
j∈Z
( P(n+1

j+1=2 +(′
j+1=2(x − xj+1=2))"[xnj+1=2; l ;xnj+1=2; r ](x)

+
∑
j∈Z

P(n+1
j "[xnj−1=2; r ;xnj+1=2; l](x); (3.15)

where the discrete derivative vector (′
j−1=2 = ( 

′
1; j+1=2; : : : ;  

′
N+2; j+1=2)

T is de5ned by

 ′
l; j+1=2 =

2
Vx
MM

{
$( P n+1

l; j+1=2 − P n+1
l; j )

1 + !(an
j+1=2 − an

j−1=2)
;

P n+1
l; j+1 − P n+1

l; j

2 + !(2an
j+1=2 − an

j−1=2 − an
j+3=2)

;

$( P n+1
l; j+1 − P n+1

l; j+1=2)

1 + !(an
j+1=2 − an

j+3=2)

}
; $∈ [0; 2]; l= 1; : : : ; N + 2: (3.16)

One should keep in mind that P(n+1
j and P(n+1

j+1=2 are averages over grid cells centered around

x =
1
2
(xnj−1=2; r + xnj−1=2; l) =

1
2
(xj−1=2 + xj+1=2) +

Vt
2
(an

j−1=2 − an
j+1=2)

and x = xj+1=2, respectively.
Note that simple averaging over [xj−1=2; xj+1=2] reduces the accuracy of the (resulting) scheme

to 5rst order. Thus, we need to use the piecewise linear reconstruction (3.15) in order not to
loose second-order accuracy when converting the nonuniform cell averages (3.8) and (3.9) into
cell averages over the nonstaggered cells [xj−1=2; xj+1=2]. Moreover, note that it is not necessary to
reconstruct on the intervals [xnj−1=2; r ; x

n
j+1=2; l] since the solution is smooth there.

Finally, the new cell averages

Pun+1j =
1
Vx

∫ xj+1=2

xj−1=2

((x; tn+1) dx

are obtained by averaging (3.15), which leads to

Pun+1j = !(an
j−1=2 P(

n+1
j−1=2 + an

j+1=2
P(n+1
j+1=2) + [1− !(an

j−1=2 + an
j+1=2)] P(

n+1
j

+
Vx
2
((!an

j−1=2)
2(′

j−1=2 − (!an
j+1=2)

2(′
j+1=2): (3.17)
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So far the exposition of the scheme has followed the derivation in [9]. We are now interested in
identifying the resulting “marching formula” for the last two components uN+1 and uN+2 of the
vector of unknowns u, for which the corresponding components FN+1 and FN+2 of the 6ux vector
F(u) are zero. To this end, 5rst observe that for these components the equations for the cell averages
(3.11) and (3.14) become

P n+1
l; j+1=2 =

1
2
( Pun

l; j + Pun
l; j+1) +

1
4
(1− an

j+1=2!)(u
′
l; j − u′l; j+1);

P n+1
l; j = Pun

l; j −
!
2
(an

j+1=2 − an
j−1=2)u

′
l; j for l= N + 1; N + 2: (3.18)

From (3.17) we obtain for l= N + 1; N + 2

Pun+1
l; j = !(an

j−1=2 P 
n+1
l; j−1=2 + an

j+1=2
P n+1
l; j+1=2) + (1− !(an

j−1=2 + an
j+1=2)) P 

n+1
l; j

+
Vx
2
((!an

j−1=2)
2 ′

l; j−1=2 − (!an
j+1=2)

2 ′
l; j+1=2): (3.19)

Inserting (3.18) we obtain the scheme for the evolution of the variables uN+1 and uN+2 representing
the discontinuity parameters 
1 and 
2:

Pun+1
l; j =

(
1− !

2
(an

j−1=2 + an
j+1=2)

)
Pun
l; j +

!
2
an
j−1=2 Pu

n
l; j−1 +

!
2
an
j+1=2 Pu

n
l; j+1

+
!
4
[(an

j+1=2 − an
j−1=2)(!(a

n
j+1=2 + an

j−1=2)− 1)u′l; j + an
j−1=2(1− !an

j−1=2)u
′
l; j−1

− an
j+1=2(1− !an

j+1=2)u
′
l; j+1] +

!2Vx
2

((an
j−1=2)

2 ′
l; j−1=2 − (an

j+1=2)
2 ′

l; j+1=2)

for l = N + 1; N + 2. The scheme for �1 to �N follows by simply taking the components 1 to
N of (3.17). It is instructive to rewrite the marching formula for u = (�1; : : : ; �N ; uN+1; uN+2)T in
conservative form. For the combined vector u, the scheme can be written as

Pun+1j = Punj − !(Fn
j+1=2 − Fn

j−1=2); (3.20)

where the components of the numerical 6ux vectors F= (F1;F2;F3; : : : ;FN+2)T are given by

Fl; j+1=2

=
1
2
(fl(�

n+1=2
1; j+1=2; r ; : : : ; �

n+1=2
N;j+1=2; r ; u

n+1=2
N+1; j+1=2; r ; u

n+1=2
N+2; j+1=2; r)

+fl(�
n+1=2
1; j+1=2; l; : : : ; �

n+1=2
N;j+1=2; l; u

n+1=2
N+1; j+1=2; l; u

n+1=2
N+2; j+1=2; l))

− an
j+1=2

2
( Pu n

l; j+1 − Pu n
l; j) +

an
j+1=2

4
(1− !an

j+1=2)(u
′
l; j + u′l; j+1)

+
!Vx
2
(an

j+1=2)
2 ′

l; j+1=2 for l= 1; : : : ; N; (3.21)
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Fn
l; j+1=2

=− an
j+1=2

2
( Pu n

l; j+1 − Pul; j) +
an
j+1=2

4
(1− !an

l; j+1=2)(u
′
l; j + u′l; j+1)

+
!Vx
2
(an

j+1=2)
2 ′

l; j+1=2 for l= N + 1; N + 2: (3.22)

The extension of the CFL stability condition for the explicit KT scheme stated in [44] for scalar
equations to the present system is

Vt
Vx

max '(Jf(�))6
1
8
: (3.23)

It is emphasized that we view (3.23) as a necessary condition for the present explicit KT scheme to
produce a physically relevant numerical result, and that no rigorous convergence result is associated
with (3.23).

3.2. Semi-discrete formulation

The scheme de5ned by (3.20)–(3.22) is just the KT scheme [44] applied to the particular system
(3.1)–(3.3). Thus, as the original scheme, it also admits a semi-discrete version. To derive it, we
rewrite (3.20) as

1
Vt
( Pun+1j − Punj ) =− 1

Vx
(Fn

j+1=2 − Fn
j−1=2); (3.24)

insert the expressions (3.22) and (3.21) into the right-hand side, and consider the limit Vt → 0, for
which all O(!) terms on the right-hand side disappear. To compactly formulate the result of this
procedure, which is performed in a more detailed way in [44], we de5ne

u+j+1=2(t) := Puj+1(t)− 1
2
u′j+1(t); u−j+1=2(t) := Puj(t) +

1
2
u′j(t): (3.25)

Then the semi-discrete central scheme is de5ned by
d Pul; j(t)
dt

=
1
2Vx

{−fl( Pu+j+1=2(t))− fl( Pu−j+1=2(t)) + fl( Pu+j−1=2(t)) + fl( Pu−j−1=2(t))

+ aj+1=2(t)( Pu+l; j+1=2(t)− Pu−l; j+1=2(t))− aj−1=2(t)( Pu+l; j−1=2(t)− Pu−l; j−1=2(t))} (3.26)

for t ¿ 0 and l= 1; : : : ; N and
d Pul; j(t)
dt

=
aj+1=2(t)
2Vx

( Pu+l; j+1=2(t)− Pu−l; j+1=2(t))−
aj−1=2(t)
2Vx

( Pu+l; j−1=2(t)− Pu−l; j−1=2(t)) (3.27)

for t ¿ 0 and l= N + 1; N + 2.

3.3. Variants and sub-cases

We shall consider some other variants of the scheme (3.20)–(3.22) as well. An obvious simpli-
5cation occurs if we assume that the discontinuity parameters are not calculated for each time step
but are taken as constants (with respect to time), i.e., we solve the additional conservation laws for
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the discontinuous coe%cients exactly. Then we only need to consider equations (3.20), (3.21) for
the fully discrete scheme or equation (3.26) for its semi-discrete version, where every occurrence of
uN+1 and uN+2 is replaced by suitable (exact) evaluations of the parameters 
1 and 
2.
A di7erent simpli5cation is produced by turning o7 the minmod limiter (for example by choosing

$= 0), and by setting an
j±1=2 = 1=!. This results in the 5rst-order Lax–Friedrichs scheme,

Fl; j+1=2 =
1
2
[fl( Punj+1) + fl( Punj )]−

1
2!
( Pun

l; j+1 − Pun
l; j) for l= 1; : : : ; N; (3.28)

Fl; j+1=2 =− 1
2!
( Pun

l; j+1 − Pun
l; j) for l= N + 1; N + 2: (3.29)

Finally, also here we may disregard the approximate evolution of uN+1 and uN+2 and simply replace
these variables by exact evaluations of the parameters 
1(x) and 
2(x), so that only the scheme
de5ned by (3.20) and (3.28) needs to be used.

4. Numerical examples

4.1. The scalar case and error study

For the error study we select one of the scalar examples that were already considered for illustration
of front tracking, upwind di7erence and relaxation schemes in [10,11]. We consider the 6ux density
function (2.16) with u∞ = 6:75, �max = 1 and n = 2 and the control parameters qL = −1, qR = 0:6
and �F = 0:8, corresponding to a hypothetical material and chosen here merely to make comparison
with previous results possible. The vessel is considered to be initially full of water, �0 = 0.
We here consider six di7erent schemes: the fully discrete 5rst-order in time KT scheme (3.20),

(3.21) with exact evolution of the discontinuity parameters (KT1A), the same scheme except that
we employ approximate evolution of the discontinuity parameters via formula (3.22) (KT1B), the
semi-discrete KT scheme combined with a second-order Runge–Kutta time discretization with exact
evolution of discontinuity parameters (such that only formula (3.26) is used) (KT2A), the same
scheme including approximate evolution of the discontinuity parameters via formula (3.27) (KT2B),
the 5rst-order Lax–Friedrichs scheme (3.20), (3.28) with the exact evolution of the discontinuity
parameters (LxFA), and 5nally the same scheme with approximate evolution discontinuity parameters
by formula (3.29) (LxFB). In all calculations we use ! = 0:015 and $ = 1:3 for the KT schemes,
and denote by J the number of cells into which the “interior” interval [− 1; 1] is divided into, i.e.
Vx = 2=J .
The scheme KT2B was selected to compute the reference solution of the problem to be used

for the error study. The discretization of the reference solution is given by J = 4800. Fig. 2
shows a three-dimensional plot of this solution, where the visual grid used for display is of course
much coarser than the computational, and the same solution represented by iso-concentration lines.
The merger of such lines indicates a shock. Physically, the solution shows how the thickening
zone (06 x6 1) is 5lled up, and that at the same time a solids 6ux into the clari5cation zone
(−16 x6 0) is produced. The solids in part leave the unit through the discharge opening and
in part form a rising sediment, which forms a curved shock. At about t = 1:2, this shock breaks
through the feed level, after some further interaction travels upward at constant speed, and reaches
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Fig. 2. Example 1: Reference solution (J =4800) used for the error analysis, showing the 5ll-up and over6ow of an ideal
clari5er-thickener. The iso-concentration lines correspond to �= 0; 0:02; 0:04; : : : ; 0:96; 0:98; 1.

Fig. 3. Example 1: Oscillatory solutions of u(x; 0:0006) produced by the 5rst-order schemes KT1A and KT1B with
! = 0:015.

the over6ow level at about t = 2:3. This case has also been used to illustrate several alternative
schemes, see [10,11]. The numerical result is consistent with solutions constructed in [24].
As combinations of a second-order spatial with a 5rst-order in time discretizations, the fully

discrete KT1A and KT1B schemes produce spurious oscillations. These oscillations were almost
invisible in the examples of polydisperse batch sedimentation (not involving discontinuous 6uxes)
presented in [9]. Fig. 3 illustrates that for the present example, however, these schemes almost
instantaneously produce solutions with spurious oscillations, which are apparently caused by the 6ux
discontinuity sitting at x=0. It would possibly be interesting to study the cause of these oscillation,
but since we have better schemes available (to be discussed in the sequel), we simply exclude the
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Fig. 4. Example 1: Numerical solution at four di7erent times calculated by LxFA (dashed), LxFB (dotted), KT2A (+)
and KT2B (×) with J = 200. The solid line represents the reference solution.

KT1A and KT1B schemes from the detailed error study. Observe, however, that KT1A leads to
oscillations on both sides of x = 0 (where the jump in 
2 sits), while KT1B leads to oscillations
only for x¿ 0 and the solution value zero on the other side of the peak around x = 0 is correctly
reproduced.
Fig. 4 displays the solution of the schemes KT2A, KT2B, LxFA and LxFB, taken at four di7erent

times and calculated with J = 200. The ‘exact’ reference solution is shown as well. Clearly, the
(discontinuous) pro5les of the ‘exact’ solution are approximated much better by the second order
KT schemes than by the LxF schemes, since the latter are a7ected by strong numerical di7usion and
are smeared out. This e7ect is, however, in part related to the very low mesh size ratio ! = 0:015,
which was chosen to be consistent with the CFL condition for the KT schemes indicated in [44].
For our example, the schemes produced reasonable approximations, with those of the LxF schemes
being less smeared out, also for much higher values of !.
Fig. 5 shows the global solution calculated by these schemes with J = 400. Again observe that

the solution produced by the second-order schemes is signi5cantly more accurate than those of the
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Fig. 5. Example 1: Iso-concentration lines produced by the indicated schemes with J = 400 and ! = 0:015. The lines
correspond to the solution values �= 0; 0:02; 0:04; : : : ; 0:98; 1:0.

5rst-order schemes, and that keeping the evolution of the discontinuity parameters exact (in the
KT2A and LxFA schemes) also leads to more accurate solutions.
We now turn to a quantitative study of the error produced by these four schemes. If �, denotes

the approximate solution referring to the discretization parameters V= (Vx;Vt) for a given scheme
and � is the exact solution, then the correct error expression should be

ẽ(t) =
∫
R
|�,(x; t)− �(x; t)| dx:

In lack of an exact solution, we replace � by the reference solution �ref calculated with J = 4800
and calculate the L1 error given by

e(t) =
∫ 1:045

−1:045
|�,(x; t)− �ref (x; t)| dx:
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Table 1
Example 1: L1 errors e(t) and calculated convergence rates (cr) for the times used in Fig. 4

t J LxFA cr LxFB cr KT2A cr KT2B cr
e(t) e(t) e(t) e(t)

50 4.21e-2 5.45e-2 1.17e-2 8.35e-3
100 3.08e-2 0.453 4.43e-2 0.298 6.15e-3 0.924 7.34e-3 0.187
150 2.56e-2 0.456 3.83e-2 0.358 5.17e-3 0.429 8.21e-3 −0:277

0.105 200 2.23e-2 0.478 3.44e-2 0.371 5.14e-3 0.020 8.65e-3 −0:184
300 1.63e-2 0.776 2.86e-2 0.457 4.83e-3 0.153 7.87e-3 0.234
400 1.44e-2 0.459 2.60e-2 0.341 5.20e-3 −0:258 7.36e-3 0.230
600 1.10e-2 0.649 2.25e-2 0.354 4.91e-3 0.145 6.34e-3 0.369
800 9.16e-3 0.622 2.06e-2 0.311 4.80e-3 0.074 5.86e-3 0.277

50 1.01e-1 1.27e-1 4.54e-2 5.12e-2
100 7.53e-2 0.428 1.08e-1 0.229 2.60e-2 0.805 3.23e-2 0.662
150 6.25e-2 0.459 1.04e-1 0.103 1.88e-2 0.792 2.27e-2 0.869

0.35 200 5.47e-2 0.462 1.01e-1 0.080 1.42e-2 0.985 1.82e-2 0.772
300 4.63e-2 0.416 9.67e-2 0.119 9.69e-3 0.943 1.35e-2 0.744
400 4.22e-2 0.320 9.18e-2 0.180 7.36e-3 0.955 1.15e-2 0.558
600 3.90e-2 0.192 8.57e-2 0.170 5.33e-3 0.795 9.31e-3 0.514
800 3.74e-2 0.150 8.08e-2 0.203 4.90e-3 0.296 8.03e-3 0.516

50 1.51e-1 1.64e-1 2.99e-2 4.57e-2
100 1.09e-1 0.472 1.36e-1 0.271 1.68e-2 0.832 2.55e-2 0.843
150 9.37e-2 0.373 1.31e-1 0.094 1.23e-2 0.773 1.88e-2 0.752

0.84 200 8.64e-2 0.284 1.30e-1 0.025 9.88e-3 0.758 1.52e-2 0.730
300 7.73e-2 0.274 1.29e-1 0.020 7.47e-3 0.688 1.15e-2 0.697
400 7.13e-2 0.279 1.27e-1 0.063 6.18e-3 0.661 9.46e-3 0.671
600 6.18e-2 0.353 1.21e-1 0.118 4.88e-3 0.582 7.36e-3 0.620
800 5.44e-2 0.442 1.14e-1 0.204 4.19e-3 0.526 6.21e-3 0.593

50 3.73e-2 5.25e-2 5.02e-3 1.44e-2
100 2.54e-2 0.550 4.85e-2 0.114 2.46e-3 1.03 9.11e-3 0.665
150 1.95e-2 0.660 4.80e-2 0.029 1.61e-3 1.04 6.40e-3 0.872

3.5 200 1.61e-2 0.663 4.64e-2 0.117 1.19e-3 1.05 5.06e-3 0.813
300 1.25e-2 0.615 4.32e-2 0.176 7.79e-4 1.05 3.62e-3 0.826
400 1.06e-2 0.587 4.08e-2 0.201 5.75e-4 1.06 2.86e-3 0.825
600 8.37e-3 0.581 3.78e-2 0.190 3.71e-4 1.08 2.04e-3 0.826
800 7.06e-3 0.593 3.60e-2 0.164 2.70e-4 1.11 1.61e-3 0.824

Table 1 displays the errors e(t) for the four schemes KT2A, KT2B, LxFA and LxFB at four
di7erent times. We 5nd con5rmed that for a given scheme and discretization, the error varies drasti-
cally during computation and is large for those times where the exact solution exhibits strong shocks.
Moreover, as expected, the errors for the LxFA and LxFB schemes are much larger than for the KT
schemes. Except for the time t = 0:105, the convergence rates for the KT schemes are larger than
for the LxF schemes.
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Fig. 6. Example 2 (left) and Example 3 (right): Simulation of a continuous separation of a bidisperse equal-density
suspension of larger (Species 1, solid) and smaller (Species 2, dashdotted) particles according to Spannenberg et al. [68].
The iso-concentration lines correspond to �1; �2 = 0; 0:005; 0:001; : : : ; 0:995; 1.

4.2. Application to a hyperbolic system of conservation laws

Spannenberg et al. [68] report an experiment of continuous sedimentation of a bidisperse sus-
pension in a clari5er-thickener. The spherical ballotini particles are of the same material having
density %s = 2370 kg=m3 and di7er in size with d1 = 2:56× 10−4 m and d2 = 5:8× 10−5 m, and thus
�2 = 0:05133. In this equal-density case, the MLB model leads to a strictly hyperbolic 2× 2 system,
as discussed in Section 2.3.
To explain their experimental 5ndings, Spannenberg et al. suggested the model of Lockett and

Al-Habbooby [51,52], which also involves a Richardson–Zaki-type hindered settling factor (2.5), for
which the exponent n= 4:65 was found to be suitable. It is, however, well known that the Lockett
and Al-Habbooby model is algebraically simple but unrealistic [8,54], and we therefore use the same
hindered settling factor with the MLB model.
The 6uid parameters are %f =1110 kg=m3 and �f =4:7×10−3 Pa s. These and g=9:81 m=s2 imply

P%s =1260 kg=m3 and �=7:5994×10−6 m4=(kg s). The experimental equipment is a column of height
4 m, with the feed source being located 1:5 m above the under6ow level. Thus, if x denotes the
depth measured in meters, we consider the interval [− 2:5; 1:5] (instead of [− 1; 1]).
We consider here two cases (Examples 2 and 3), both starting from a vessel full of water (�01 =

�02 = 0), see Fig. 6. In the 5rst (Example 2), we adopt the control variables qR = 6:333× 10−4 m=s,
qL=−6:005×10−5 m=s, �F1=0:1049 and �F2=0:0221 used by Spannenberg et al. [68] (and expressed
in new units) in their (unique) experiment. In the second (Example 3) we basically apply the same
parameters except that we choose qR =0:333×10−4 m=s and qL =−6:602×10−4 m=s. In both cases
we have qR−qL=6:9335×10−4 m=s. Consequently, Example 3 illustrates what would have happened
if the experimentators had repeated the experiment (Example 2) maintaining same the feed rate and
composition but reducing the discharge 6ow rate. In the case of Example 3, material immediately
enters both the clari5cation and thickening zones, accumulates at the bottom and forms a rising
sediment, which eventually breaks through the feed level, as in Example 1. We observe that the
solution is remarkably complicated with eleven areas of constant composition. The main di7erence
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Fig. 7. Elliptic (instability) region of the MLB model for a bidisperse suspension with n = 5:765, �1 = 0:1234 and
P%1= P%2 =−0:04046 [57].

to Example 1 is that when the rising shock representing the sediment level reaches the feed level,
new kinematic shocks traveling both upwards and downwards are created.
In Example 2 we choose J = 500, != 10, whereas in Example 3 we choose J = 800, != 8:0.

4.3. Application to a hyperbolic-elliptic system of conservation laws

We now simulate the continuous separation of a bidisperse suspension (N = 2) in the continuous
clari5er-thickener described in Section 2.4. In their papers, Nasr-El-Din et al. [56–58] exclusively
consider bidisperse suspensions with one buoyant (lighter than the 6uid) and one heavy (heavier than
the 6uid) species, and we here closely adapt the parameters of the experimental results described in
[57] (see Fig. 7). In the framework of the MLB model, such heavy-buoyant systems usually lead
to hyperbolic-elliptic mixed type equations. We show here that our numerical scheme also yields
reasonable results for this case.
Nasr-El-Din et al. [57] consider a bidisperse suspension of polysterene particles (d1 = 3:9 ×

10−4 m; %1 = 1050 kg=m3) and glass beads (d2 = 1:37 × 10−4 m, %2 = 2850 kg=m3) suspended in a
salt solution (%f =1120 kg=m3, �f =1:41×10−3 Pa s). For monodisperse suspensions of each particle
species, the 6ux function (2.16) was found to be suitable with the exponents n = n1 = 5:705 and
n= n2 = 5:826, respectively. The remaining parameters are �2 = (d2=d1)2 = 0:1234, P%1 =−70 kg=m3,
P%2 = 1730 kg=m3 and � = 5:879 × 10−5m4=(kg s). For polydisperse calculations we here utilize the
hindered settling function de5ned by (2.5) with �max = 0:7 and n= (n1 + n2)=2 = 5:765.
The equipment used in [57] is a cylindrical clari5er-thickener of total height 40 cm with the feed

source located in the middle, and a rectangular cross-sectional area S=4:24× 10−4 m2. Nasr-El-Din
et al. [57] report experiments with many di7erent feed and discharge 6uxes. We consider here
just two of the cases of continuous sedimentation reported (our Examples 4 and 5), and present a
simulation of one hypothetical additional experiment (Example 6).
Example 4 corresponds to a volume feed 6ux of QF=13:2 cm3=s according to [57], of which 75%

are directed into the thickening and 25% into the clari5cation zone, which implies qR = 2:3349 ×
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Fig. 8. Example 4: Simulation of continuous separation of a bidisperse suspension of buoyant (Species 1) and heavy
(Species 2) particles with �F1 = 0:144 and �F2 = 0:168. Top left: iso-concentration lines (solid: Species 1, dashdotted:
Species 2; for the values 0; 0:01; 0:02; : : :) and areas of constant composition, top right and bottom: concentration pro5les
at three selected times.

10−2 m=s and qL = −7:783 × 10−3 m=s. The feed concentrations are �F1 = 0:144 and �F2 = 0:168.
Example 5 is a variant of this case, also considered in [57], with QF = 4:4 cm3=s, the same ‘split
ratio’ 75%, i.e. qR = 7:783 × 10−3 m=s and qL = −2:594 × 10−3 m=s. The feed concentrations are
�F1 = 0:065 and �F2 = 0:067. Figs. 8 and 9 show numerical simulations of these cases produced
by the KTA2 scheme with Vx = 0:4=J , J = 500, and ! = 10. In both cases, a stationary solution
is assumed; in Example 4 (Fig. 8), a steady 6ow establishes in which the over6ow contains both
species at similar compositions and the heavy Species 2 is clearly dominant in the under6ow, while
in Example 5, Species 2 does not enter the clari5cation zone. Moreover, we observe in Example 4
the formation of a region where the concentrations are �1 = 0:144 and �2 = 0:168 in the interior
of the equipment. These values are identical to the feed concentration and cause the equations to
be elliptic. Since according to our discussion in Section 2.3, (local) ellipticity is a criterion for
the occurrence of instabilities, our result is consistent with the quali5ed statement by Nasr-El-Din
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Fig. 9. Example 5: Simulation of continuous separation of a bidisperse suspension of buoyant (Species 1) and heavy
(Species 2) particles with �F1 = 0:065 and �F2 = 0:067. Top left: iso-concentration lines and areas of constant composition,
top right and bottom: concentration pro5les at three selected times.

et al. [57, p. 1010] that for these 6ow parameters, “6ow visualization studies indicated that the local
instability extends to the whole length of the settler”. No ellipticity region appears in the numerical
simulation of Example 5 (Fig. 9), and for that case no instabilities were observed experimentally
[57, p. 1007].
Example 6 represents a hypothetical experiment. We consider a closed settling column with no

feed or discharge (i.e., qL =qR =0) and assume that initially the upper half is 5lled with suspension
consisting only of heavy particles and the lower half 5lled with suspension containing only light
particles; more speci5cally, we select

�01 =

{
0:18 for 06 x6 0:2;

0 for 0:2¡x6 0:4;
�02 =

{
0 for 06 x6 0:2;

0:18 for 0:2¡x6 0:4:
(4.1)

The interesting features of the solution appear near x=0:2, and are una7ected by the boundaries x=0
and x = 0:4. Thus we regard this case as a Riemann problem. Clearly, the equations are hyperbolic
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Fig. 10. Example 6: Solution of a Riemann problem with the heavy particles initially located above the light.

on the line t=0, but the state (0:18; 0:18) causes the equations to be elliptic. Similar heavy-buoyant
con5gurations, with the main idea being that the trajectories of the upwards and downwards moving
particles should cross each other, have been studied experimentally by Law et al. [46] and were
simulated in our previous paper [8]. We have simulated this separation with very high accuracy (the
interval [0; 0:4] was subdivided into J = 5000 cells) and obtained the result shown in Fig. 10.
According to this simulation, only a very small amount of the light particles (Species 1) passes

through the layer of heavy particles and arrives at the top end of the column x=0 to form a sediment
there, and vice versa. After very short time, both species “lock” each other at x=0, which means that
both the upwards motion of light particles and the downwards motion of heavy particles is stopped,
and we observe the formation of sediment “onto” x = 0 from both sides. This anomalous solution
was not observed in experiments and the numerical simulations in [8]. We have strong reason to
believe that the unusual nature of this solution is related to the ellipticity region. In fact, it turned
out that near x = 0 and for small times, a small region in the x-t-plane forms where the equation
assumes elliptic type, and which could be responsible for the locking e7ect. The formation of this
ellipticity region in the x-t-plane seems to be related to the choice of the adjacent concentrations
in (4.1); for example, (0:18; 0:18) is a state that clearly belongs to the ellipticity region drawn in
Fig. 7, and we calculated the same example with 0:18 replaced by some smaller value u0. The
solution qualitatively was the same as in Fig. 10 whenever (u0; u0) fell into the ellipticity region;
otherwise solutions looked similar to those of [8]. These vague remarks should emphasize that
the analysis of hyperbolic-elliptic systems in the present model is far from being well understood,
although it has been clearly shown [16] that these mixed-type equations are physically appropriate.
For similar reasons, there is at present no guarantee that numerical schemes converge to physically
meaningful solutions.

5. Conclusions

The mathematical model of continuous sedimentation of polydisperse sedimentation derived herein
is a straightforward combination of previous works on continuous sedimentation of monodisperse
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suspensions and batch settling of polydisperse suspensions. The term “clari5er-thickener” is utilized
herein in order to be consistent with previous analyzes of the monodisperse case [10–15]. However,
unlike the monodisperse case, the focus in applications of the present model will not primarily be
on thickening of a given suspension. Rather, practitioners are interested in separating well mixed
polydisperse suspensions in order to recover the di7erent particle species in monodisperse suspensions
(“products”). This operation is known as classi5cation. Obviously, a clari5er-thickener can produce
only two products simultaneously. For more products, the one-dimensional clari5er-thickener setup
can be extended to a simple hydrodynamic model of classi5cation into N products if additional
sinks, permitting to “tap” the equipment at di7erent heights, are provided. Several engineering papers
suggest such models [1,26,60]. However, sink terms are more di%cult to include than source terms,
since the composition of the tapped mixture is unknown and therefore part of the solution, while
the composition of feed suspension injected into the unit can be prescribed. We will come back to
the treatment of sink terms in a forthcoming paper.
A natural question arising from our model is that of agreement with experimental data. Some

of the numerical examples presented herein are based on experimental information. The numerical
results qualitatively agree with the published experimental information. The problem is that the model
predicts the detailed dynamics of the separation in the interior of the unit, while most experimental
data, for example those recorded in [56–58], are related to the composition of the over6ow and
under6ow at steady state and general observations of instability only. Similarly, in [68] only the
under6ow 6ux of each species and one concentration pro5le of the smaller species are shown. The
di%culty is with measuring individual particle species concentrations in a polydisperse, continuously
operated system. For the batch settling in a closed column, some systematic experiments to evaluate
the predictions of several polydisperse sedimentation models have been conducted, see [46,64].
Continuing our previous work [8,9], we have here devised 5rst- and second-order accurate nu-

merical schemes of central type [44,59,69] for systems of conservation laws like (1.1) containing
discontinuous coe%cients. We derived central schemes by discretizing the enlarged system (1.3) (not
the original system (1.1)) in which the discontinuous coe%cients are treated as additional conserva-
tion laws (1.2). The additional conservation laws (1.2) were then discretized (solved approximately)
or solved exactly, giving raise to di7erent classes of numerical schemes. Our motivation for consider-
ing the enlarged system (1.3) comes from the mathematical treatment of equations with discontinuous
coe%cients, see, e.g., [27,28,33] and the other references cited in Section 1. Discretizing the enlarged
system would be consistent with adding arti5cial viscosity to both (1.1) and (1.2) in the continuous
case, an approach taken in, e.g., [27] to solve the Riemann problem for a scalar conservation law
with a discontinuous coe%cient. Our motivation for building numerical schemes based on the ex-
act evolution of the discontinuous coe%cients comes from the scalar convergence theory developed
in [40,71,72]. The general conclusion is that the second-order central schemes (based on both the
approximate and exact evolution of the coe%cients) generate satisfactory results, and, at the same
time, they are easy to implement. We also add that the schemes based on the exact solution of the
conservation laws for the discontinuous coe%cients are more accurate than those based on the ap-
proximate solution of these laws. A convergence result for the Lax–Friedrichs scheme (based on the
exact evolution of the discontinuous coe%cients) for a scalar conservation law with a discontinuous
coe%cient can be found in [40].
The use of central di7erence schemes for the simulation of polydisperse sedimentation in closed

columns was introduced in [8,9] and has meanwhile been adopted by Xue and Sun [73]. We have
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illustrated here that the semi-discrete version of the KT scheme, which is also the one chosen in
[73], can be employed to accurately simulate continuous sedimentation in the presence of source
terms, while the fully discrete KT scheme utilized in [9] leads to oscillatory solutions. Moreover, the
semi-discrete scheme also produces physically reasonable looking results in the hyperbolic-elliptic
examples. However, it is at present very di%cult to evaluate the quality of these solutions, since
virtually all mathematical questions and physical insight in the hyperbolic-elliptic case are still un-
resolved.
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